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LETTER TO THE EDITOR 

Axial anomaly at finite temperature 

S Chaturvedi, Neelima Gupte and V Srinivasan 
School of Physics, University of Hyderabad, Hyderabad 500134, India 

Received 30 May 1985 

Abstract. The Jackiw-Bardeen-Adler anomaly for Q E D ~  and Q E D ~  are calculated at finite 
temperature. It is found that the anomaly is independent of temperature. Ishikawa's 
method for calculating the quantised Hall effect is extended to finite temperature. 

Calculations in quantum field theory (QFT) at finite temperature have acquired sig- 
nificance especially with respect to the early universe. Since the axial anomaly occupies 
a special place in QFT it would be natural to ask what happens to it at finite temperature. 
Zhao-Won-Yun has calculated the Q E D ~  triangle diagram at finite temperature (Zhao- 
Won-Yun 1984) and has shown that the anomaly is not affected at non-zero temperature. 
Reuter and Dittrich have calculated QED* at finite temperature and show that it is 
unaffected (Dittrich and Reuter 1984). In this letter we calculate the axial anomaly 
at finite temperature extending Fujikawa's (1980) method. We confirm that the axial 
anomaly is indeed not affected: intuitively one expects this result as the anomaly arises 
from topological considerations and is related to the Atiyah-Singer index. Also one 
knows that in superconductivity the flux quantisation does not depend on temperature. 

The Schwinger model in (2+1) dimensions has acquired significance, since the 
integral quantised Hall effect can be explained on the basis of this model (Ishikawa 
1984). Although one knows that in odd spacetime dimensions the anomaly is absent, 
Ishikawa has shown that something similar to it happens in (2+1) dimensions; we 
extend his arguments to finite temperature and show that indeed the integral quantised 
Hall effect does not depend on temperature, i.e. the integrally quantised conductivity 
is independent of temperature. 

Consider a SU( N )  Yang-Mills field coupled with fermions whose Lagrangian is 

3 = +FiyaDa+ - mtl/lC, + ( 1 / 2 g Z ) ~ p Y ~ , ,  

We consider this in Euclidean spacetime by replacing xo+ -ix4, Ao+ iA,. After this 
operation 

0= v4D4+ykDk=Ya(aa+Aa).  

The y matrices follow the Bjorken-Drell convention, y5 = -y1y2y3y4 and y 5  is Her- 
mitian. The eigenvalues equation for 0 is 

i 0 4 ,  = An4n. 

The generating functional of the complete Green function is given by 

z (  77, f j ,  J,) = - d k  exp (S+ v$+ $77 - J,A,) dx. N ' 5  5 
0305-4470/85/150963 + 05S02.25 0 1985 The Institute of Physics L963 



L964 Letter to the Editor 

Here 

d p  =n 9A,(x) d$ dll, 
X 

where 9A,(x) contains the Faddeev-Popov factors. Under a local chiral transfor- 
mation 

+ ( X I +  N x ' )  =exp(ia(x)rJ l l , (x)  

i ( x )  + $(x') = $(x) exp(ia(x)ys). 

The Jacobian factor for d$ and dll, leads to the following change in d p  due to the 
chiral transformations 

) d p  + d p  exp( -2i [ dx a(x)A(x)  

where 

4 x 1  =c 4;(x)Ysdn(x) 
n 

where the $+'s are eigenfunctions ofthe operator 0. A(x) is the definition ofthe anomaly 
in Fujikawa's method. It is evaluated by Fujikawa in the following way using a regulator 

A(x) = lim Tr Ts exp(-D2/M2) S4(x-y) 
M-m x - y  

d4k 
= M - m  lim Tr 5 m ~ ~ e x p ( - 0 ~ / M ~ )  exp[ik(x-y)]. 

To proceed to the finite temperature we replace (Ezawa et al 1957, Jackiw and Dolan 
1974) 

[ d4x + lop dxo 1-r d3x 

S (  k4-&(n+i) )  exp( -5) exp[ik(x-y)] 
P 

-Cexp(-w2,/M2) XI 
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Now we have to compute the term independent of M, as the rest vanish in the limit 
M + Co. To do this we expand E exp - ( w ; / M ’ )  as an Euler-Maclaurin series 

J;; C exp(-w2,/ M ’ )  = - P M (  1 + O( M ) ) .  
27r 

Thus we find the anomaly to be 

1 
167r2 

A(x) = --Tr *F,”F,, 

which is the same as its zero temperature value. 

2’= & y”)(iD, + eA,)++ $+U(x). 

Consider a system described by the Lagrangian in (2+ 1) dimensions. 

Here I+/J stands for the fermion field, A,(x) the external static electromagnetic field, 
U(x) is a static background field and the y,’s are 2 x 2  matrices satisfying 

E,vpY,YuYp = 1. 

The generating functional is 

z = 1 d p  exp( -i 1 2 d’x) 

where 

d p  = d& d+. 

Consider the following analogue of the chiral transformation 

+L(% 1 )  = exp(ia(x)yo)+(-f, t )  

i(f, t )  = i ( x ,  t )  exp(ia(x)y*). 

The Jacobian factor for d q  d+ becomes 

) d p - d p ‘ e x p  -2i dxa (x )A(x)  ( 1  
where 

4 x 1  = c 9;(x)Yo4n(X). 
n 

If A(x) is evaluated at finite temperature by the procedure given in the previous section 
one finds 

A(x) = -(1/2~r)eF,’. 

Thus the anomaly in (2 + 1) dimensions does not change with temperature. If a (x) = a, 
a constant, the change in the phase factor due to the change in measure is 
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Demanding that the action be unaltered under the transformations considered leads to 

47r- dx FI2  = 27r x (integer) 
h ‘I 

therefore 

h 
dx F12 = x (integer). 

Since the anomaly term is the same at all temperatures we conclude that the flux 
quantisation does not depend on temperature. Let us consider the anomaly term’s 
contribution to the ground state of the system. It is equal to -ZA,. 

If we change A, adiabatically, then this will change to -U,, + SA, where 

SA, = # J ~ y o e S A o ~ ,  

and ZSA, can be easily shown to be 

e2 J’ SA,(x)FY(x) dx. 
h 

The total increase in energy is given by 

A E  =- dxAo(x)Fu(x). 
e2 h I 

In the case of the Hall effect a constant electrical field is applied in the y direction 
and a magnetic field is applied orthogonal to the (x, y) plane. For such a system 

Ao= E,, FY = H. 

The Hall current is given by 

We find that 

Z=(e’/h)V 

is unaltered at finite temperature. Thus the integral quantised Hall effect does not 
change with temperature. 

Thus we have shown that the anomaly is not affected by temperature. As a 
consequence we see that the integral quantised Hall effect is unaltered at finite 
temperature. However the fractional Hall effect could depend on temperature as it 
is difficult to correlate that with the anomaly. 

Dittrich and Reuter have calculated the axial anomaly in Q E D ~  by the 6 function 
technique at finite temperature. Extending Fujikawa’s method we also find very easily 
that it is 

1 
2 T  

A(x) = - - E ~ ~ F ~ ’ .  
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It will be interesting to investigate the effect of charge fractionalisation due to the 
anomaly at finite temperature. Such a study is in progress and will be reported 
elsewhere. 

One of us (NG) wishes to thank the CSIR for financial support. We thank Dr Anishetty 
for discussions and a critical reading of the manuscript. 
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